3.773 \(\int \frac {1}{\cot ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}} \, dx\)

Optimal. Leaf size=217 \[ -\frac {1}{d \cot ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}-\frac {(-1)^{3/4} \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \tan ^{-1}\left (\frac {(-1)^{3/4} \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{\sqrt {a} d}-\frac {2 i \sqrt {a+i a \tan (c+d x)}}{a d \sqrt {\cot (c+d x)}}+\frac {\left (\frac {1}{2}+\frac {i}{2}\right ) \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \tanh ^{-1}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{\sqrt {a} d} \]

[Out]

-(-1)^(3/4)*arctan((-1)^(3/4)*a^(1/2)*tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/2))*cot(d*x+c)^(1/2)*tan(d*x+c)^(
1/2)/d/a^(1/2)+(1/2+1/2*I)*arctanh((1+I)*a^(1/2)*tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/2))*cot(d*x+c)^(1/2)*t
an(d*x+c)^(1/2)/d/a^(1/2)-1/d/cot(d*x+c)^(3/2)/(a+I*a*tan(d*x+c))^(1/2)-2*I*(a+I*a*tan(d*x+c))^(1/2)/a/d/cot(d
*x+c)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.58, antiderivative size = 217, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 10, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.357, Rules used = {4241, 3558, 3597, 3601, 3544, 205, 3599, 63, 217, 203} \[ -\frac {1}{d \cot ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}-\frac {(-1)^{3/4} \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \tan ^{-1}\left (\frac {(-1)^{3/4} \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{\sqrt {a} d}-\frac {2 i \sqrt {a+i a \tan (c+d x)}}{a d \sqrt {\cot (c+d x)}}+\frac {\left (\frac {1}{2}+\frac {i}{2}\right ) \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \tanh ^{-1}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{\sqrt {a} d} \]

Antiderivative was successfully verified.

[In]

Int[1/(Cot[c + d*x]^(5/2)*Sqrt[a + I*a*Tan[c + d*x]]),x]

[Out]

-(((-1)^(3/4)*ArcTan[((-1)^(3/4)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]]*Sqrt[Cot[c + d*x]]*Sq
rt[Tan[c + d*x]])/(Sqrt[a]*d)) + ((1/2 + I/2)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c
+ d*x]]]*Sqrt[Cot[c + d*x]]*Sqrt[Tan[c + d*x]])/(Sqrt[a]*d) - 1/(d*Cot[c + d*x]^(3/2)*Sqrt[a + I*a*Tan[c + d*x
]]) - ((2*I)*Sqrt[a + I*a*Tan[c + d*x]])/(a*d*Sqrt[Cot[c + d*x]])

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 3544

Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[
(-2*a*b)/f, Subst[Int[1/(a*c - b*d - 2*a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x]
 /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]

Rule 3558

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Si
mp[((b*c - a*d)*(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n - 1))/(2*a*f*m), x] + Dist[1/(2*a^2*m), Int[(a
+ b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^(n - 2)*Simp[c*(a*c*m + b*d*(n - 1)) - d*(b*c*m + a*d*(n - 1))
- d*(b*d*(m - n + 1) - a*c*(m + n - 1))*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c -
a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[m, 0] && GtQ[n, 1] && (IntegerQ[m] || IntegersQ[2*m,
2*n])

Rule 3597

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(B*(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n)/(f*(m + n)), x] +
Dist[1/(a*(m + n)), Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n - 1)*Simp[a*A*c*(m + n) - B*(b*c*m + a*
d*n) + (a*A*d*(m + n) - B*(b*d*m - a*c*n))*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] &
& NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && GtQ[n, 0]

Rule 3599

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[(b*B)/f, Subst[Int[(a + b*x)^(m - 1)*(c + d*x)^n, x], x, Tan[e + f*x
]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && EqQ[A*b + a*B,
 0]

Rule 3601

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[(A*b + a*B)/b, Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n, x]
, x] - Dist[B/b, Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(a - b*Tan[e + f*x]), x], x] /; FreeQ[{a, b
, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[A*b + a*B, 0]

Rule 4241

Int[(cot[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Dist[(c*Cot[a + b*x])^m*(c*Tan[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Tan[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownTangentIntegrandQ
[u, x]

Rubi steps

\begin {align*} \int \frac {1}{\cot ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}} \, dx &=\left (\sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \int \frac {\tan ^{\frac {5}{2}}(c+d x)}{\sqrt {a+i a \tan (c+d x)}} \, dx\\ &=-\frac {1}{d \cot ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}-\frac {\left (\sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \int \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)} \left (-\frac {3 a}{2}+2 i a \tan (c+d x)\right ) \, dx}{a^2}\\ &=-\frac {1}{d \cot ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}-\frac {2 i \sqrt {a+i a \tan (c+d x)}}{a d \sqrt {\cot (c+d x)}}-\frac {\left (\sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \int \frac {\sqrt {a+i a \tan (c+d x)} \left (-i a^2-\frac {1}{2} a^2 \tan (c+d x)\right )}{\sqrt {\tan (c+d x)}} \, dx}{a^3}\\ &=-\frac {1}{d \cot ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}-\frac {2 i \sqrt {a+i a \tan (c+d x)}}{a d \sqrt {\cot (c+d x)}}+\frac {\left (i \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \int \frac {(a-i a \tan (c+d x)) \sqrt {a+i a \tan (c+d x)}}{\sqrt {\tan (c+d x)}} \, dx}{2 a^2}+\frac {\left (i \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \int \frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {\tan (c+d x)}} \, dx}{2 a}\\ &=-\frac {1}{d \cot ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}-\frac {2 i \sqrt {a+i a \tan (c+d x)}}{a d \sqrt {\cot (c+d x)}}+\frac {\left (i \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {x} \sqrt {a+i a x}} \, dx,x,\tan (c+d x)\right )}{2 d}+\frac {\left (a \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \operatorname {Subst}\left (\int \frac {1}{-i a-2 a^2 x^2} \, dx,x,\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}\\ &=\frac {\left (\frac {1}{2}+\frac {i}{2}\right ) \tanh ^{-1}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{\sqrt {a} d}-\frac {1}{d \cot ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}-\frac {2 i \sqrt {a+i a \tan (c+d x)}}{a d \sqrt {\cot (c+d x)}}+\frac {\left (i \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {a+i a x^2}} \, dx,x,\sqrt {\tan (c+d x)}\right )}{d}\\ &=\frac {\left (\frac {1}{2}+\frac {i}{2}\right ) \tanh ^{-1}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{\sqrt {a} d}-\frac {1}{d \cot ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}-\frac {2 i \sqrt {a+i a \tan (c+d x)}}{a d \sqrt {\cot (c+d x)}}+\frac {\left (i \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \operatorname {Subst}\left (\int \frac {1}{1-i a x^2} \, dx,x,\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}\\ &=-\frac {(-1)^{3/4} \tan ^{-1}\left (\frac {(-1)^{3/4} \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{\sqrt {a} d}+\frac {\left (\frac {1}{2}+\frac {i}{2}\right ) \tanh ^{-1}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{\sqrt {a} d}-\frac {1}{d \cot ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}-\frac {2 i \sqrt {a+i a \tan (c+d x)}}{a d \sqrt {\cot (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 2.21, size = 248, normalized size = 1.14 \[ \frac {\sqrt {\cot (c+d x)} \left (2 e^{2 i (c+d x)}-3 e^{4 i (c+d x)}+e^{i (c+d x)} \sqrt {-1+e^{2 i (c+d x)}} \left (1+e^{2 i (c+d x)}\right ) \tanh ^{-1}\left (\frac {e^{i (c+d x)}}{\sqrt {-1+e^{2 i (c+d x)}}}\right )+\sqrt {2} e^{i (c+d x)} \sqrt {-1+e^{2 i (c+d x)}} \left (1+e^{2 i (c+d x)}\right ) \tanh ^{-1}\left (\frac {\sqrt {2} e^{i (c+d x)}}{\sqrt {-1+e^{2 i (c+d x)}}}\right )+1\right )}{\sqrt {2} d \left (1+e^{2 i (c+d x)}\right )^2 \sqrt {\frac {a e^{2 i (c+d x)}}{1+e^{2 i (c+d x)}}}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(Cot[c + d*x]^(5/2)*Sqrt[a + I*a*Tan[c + d*x]]),x]

[Out]

((1 + 2*E^((2*I)*(c + d*x)) - 3*E^((4*I)*(c + d*x)) + E^(I*(c + d*x))*Sqrt[-1 + E^((2*I)*(c + d*x))]*(1 + E^((
2*I)*(c + d*x)))*ArcTanh[E^(I*(c + d*x))/Sqrt[-1 + E^((2*I)*(c + d*x))]] + Sqrt[2]*E^(I*(c + d*x))*Sqrt[-1 + E
^((2*I)*(c + d*x))]*(1 + E^((2*I)*(c + d*x)))*ArcTanh[(Sqrt[2]*E^(I*(c + d*x)))/Sqrt[-1 + E^((2*I)*(c + d*x))]
])*Sqrt[Cot[c + d*x]])/(Sqrt[2]*d*Sqrt[(a*E^((2*I)*(c + d*x)))/(1 + E^((2*I)*(c + d*x)))]*(1 + E^((2*I)*(c + d
*x)))^2)

________________________________________________________________________________________

fricas [B]  time = 0.82, size = 699, normalized size = 3.22 \[ -\frac {2 \, \sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}} {\left (3 \, e^{\left (4 i \, d x + 4 i \, c\right )} - 2 \, e^{\left (2 i \, d x + 2 i \, c\right )} - 1\right )} - {\left (a d e^{\left (3 i \, d x + 3 i \, c\right )} + a d e^{\left (i \, d x + i \, c\right )}\right )} \sqrt {\frac {2 i}{a d^{2}}} \log \left (2 \, {\left (\sqrt {2} {\left (a d e^{\left (2 i \, d x + 2 i \, c\right )} - a d\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}} \sqrt {\frac {2 i}{a d^{2}}} + 2 i \, a e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}\right ) + {\left (a d e^{\left (3 i \, d x + 3 i \, c\right )} + a d e^{\left (i \, d x + i \, c\right )}\right )} \sqrt {\frac {2 i}{a d^{2}}} \log \left (-2 \, {\left (\sqrt {2} {\left (a d e^{\left (2 i \, d x + 2 i \, c\right )} - a d\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}} \sqrt {\frac {2 i}{a d^{2}}} - 2 i \, a e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}\right ) - {\left (a d e^{\left (3 i \, d x + 3 i \, c\right )} + a d e^{\left (i \, d x + i \, c\right )}\right )} \sqrt {\frac {i}{a d^{2}}} \log \left ({\left (\sqrt {2} {\left (32 i \, a^{2} d e^{\left (3 i \, d x + 3 i \, c\right )} - 32 i \, a^{2} d e^{\left (i \, d x + i \, c\right )}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}} \sqrt {\frac {i}{a d^{2}}} - 48 \, a^{2} e^{\left (2 i \, d x + 2 i \, c\right )} + 16 \, a^{2}\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}\right ) + {\left (a d e^{\left (3 i \, d x + 3 i \, c\right )} + a d e^{\left (i \, d x + i \, c\right )}\right )} \sqrt {\frac {i}{a d^{2}}} \log \left ({\left (\sqrt {2} {\left (-32 i \, a^{2} d e^{\left (3 i \, d x + 3 i \, c\right )} + 32 i \, a^{2} d e^{\left (i \, d x + i \, c\right )}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}} \sqrt {\frac {i}{a d^{2}}} - 48 \, a^{2} e^{\left (2 i \, d x + 2 i \, c\right )} + 16 \, a^{2}\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}\right )}{4 \, {\left (a d e^{\left (3 i \, d x + 3 i \, c\right )} + a d e^{\left (i \, d x + i \, c\right )}\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cot(d*x+c)^(5/2)/(a+I*a*tan(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

-1/4*(2*sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1))*
(3*e^(4*I*d*x + 4*I*c) - 2*e^(2*I*d*x + 2*I*c) - 1) - (a*d*e^(3*I*d*x + 3*I*c) + a*d*e^(I*d*x + I*c))*sqrt(2*I
/(a*d^2))*log(2*(sqrt(2)*(a*d*e^(2*I*d*x + 2*I*c) - a*d)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x
+ 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1))*sqrt(2*I/(a*d^2)) + 2*I*a*e^(I*d*x + I*c))*e^(-I*d*x - I*c)) + (a*d*e
^(3*I*d*x + 3*I*c) + a*d*e^(I*d*x + I*c))*sqrt(2*I/(a*d^2))*log(-2*(sqrt(2)*(a*d*e^(2*I*d*x + 2*I*c) - a*d)*sq
rt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1))*sqrt(2*I/(a*d^2))
- 2*I*a*e^(I*d*x + I*c))*e^(-I*d*x - I*c)) - (a*d*e^(3*I*d*x + 3*I*c) + a*d*e^(I*d*x + I*c))*sqrt(I/(a*d^2))*l
og((sqrt(2)*(32*I*a^2*d*e^(3*I*d*x + 3*I*c) - 32*I*a^2*d*e^(I*d*x + I*c))*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sq
rt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1))*sqrt(I/(a*d^2)) - 48*a^2*e^(2*I*d*x + 2*I*c) + 16*a^
2)*e^(-2*I*d*x - 2*I*c)) + (a*d*e^(3*I*d*x + 3*I*c) + a*d*e^(I*d*x + I*c))*sqrt(I/(a*d^2))*log((sqrt(2)*(-32*I
*a^2*d*e^(3*I*d*x + 3*I*c) + 32*I*a^2*d*e^(I*d*x + I*c))*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x
+ 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1))*sqrt(I/(a*d^2)) - 48*a^2*e^(2*I*d*x + 2*I*c) + 16*a^2)*e^(-2*I*d*x -
2*I*c)))/(a*d*e^(3*I*d*x + 3*I*c) + a*d*e^(I*d*x + I*c))

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\sqrt {i \, a \tan \left (d x + c\right ) + a} \cot \left (d x + c\right )^{\frac {5}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cot(d*x+c)^(5/2)/(a+I*a*tan(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(I*a*tan(d*x + c) + a)*cot(d*x + c)^(5/2)), x)

________________________________________________________________________________________

maple [B]  time = 1.94, size = 801, normalized size = 3.69 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/cot(d*x+c)^(5/2)/(a+I*a*tan(d*x+c))^(1/2),x)

[Out]

(-1/4-1/4*I)/d*(2*I*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)+I*cos(d*x+c)*sin(d*x+c)*ln(((-1+cos(d*x+c))/sin(d*x+c))
^(1/2)-1)+2*I*arctan((1/2+1/2*I)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*2^(1/2))*2^(1/2)*cos(d*x+c)^2+I*cos(d*x+c)
*sin(d*x+c)*ln(((-1+cos(d*x+c))/sin(d*x+c))^(1/2)-I)-I*cos(d*x+c)*sin(d*x+c)*ln(((-1+cos(d*x+c))/sin(d*x+c))^(
1/2)+I)-2*I*cos(d*x+c)^2*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)-I*cos(d*x+c)*sin(d*x+c)*ln(((-1+cos(d*x+c))/sin(d*
x+c))^(1/2)+1)-2*I*cos(d*x+c)*arctan((1/2+1/2*I)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*2^(1/2))*2^(1/2)-2*cos(d*x
+c)*sin(d*x+c)*arctan((1/2+1/2*I)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*2^(1/2))*2^(1/2)+2*cos(d*x+c)^2*((-1+cos(
d*x+c))/sin(d*x+c))^(1/2)-ln(((-1+cos(d*x+c))/sin(d*x+c))^(1/2)+I)*cos(d*x+c)^2-ln(((-1+cos(d*x+c))/sin(d*x+c)
)^(1/2)+1)*cos(d*x+c)^2+ln(((-1+cos(d*x+c))/sin(d*x+c))^(1/2)-1)*cos(d*x+c)^2+ln(((-1+cos(d*x+c))/sin(d*x+c))^
(1/2)-I)*cos(d*x+c)^2+4*cos(d*x+c)*sin(d*x+c)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)+4*I*cos(d*x+c)*sin(d*x+c)*((-
1+cos(d*x+c))/sin(d*x+c))^(1/2)+cos(d*x+c)*ln(((-1+cos(d*x+c))/sin(d*x+c))^(1/2)+I)+cos(d*x+c)*ln(((-1+cos(d*x
+c))/sin(d*x+c))^(1/2)+1)-cos(d*x+c)*ln(((-1+cos(d*x+c))/sin(d*x+c))^(1/2)-1)-cos(d*x+c)*ln(((-1+cos(d*x+c))/s
in(d*x+c))^(1/2)-I)-2*((-1+cos(d*x+c))/sin(d*x+c))^(1/2))*(a*(I*sin(d*x+c)+cos(d*x+c))/cos(d*x+c))^(1/2)*cos(d
*x+c)^2/(I*sin(d*x+c)+cos(d*x+c))/((-1+cos(d*x+c))/sin(d*x+c))^(1/2)/(cos(d*x+c)/sin(d*x+c))^(5/2)/sin(d*x+c)^
3/a

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\sqrt {i \, a \tan \left (d x + c\right ) + a} \cot \left (d x + c\right )^{\frac {5}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cot(d*x+c)^(5/2)/(a+I*a*tan(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(I*a*tan(d*x + c) + a)*cot(d*x + c)^(5/2)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {1}{{\mathrm {cot}\left (c+d\,x\right )}^{5/2}\,\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(cot(c + d*x)^(5/2)*(a + a*tan(c + d*x)*1i)^(1/2)),x)

[Out]

int(1/(cot(c + d*x)^(5/2)*(a + a*tan(c + d*x)*1i)^(1/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\sqrt {i a \left (\tan {\left (c + d x \right )} - i\right )} \cot ^{\frac {5}{2}}{\left (c + d x \right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cot(d*x+c)**(5/2)/(a+I*a*tan(d*x+c))**(1/2),x)

[Out]

Integral(1/(sqrt(I*a*(tan(c + d*x) - I))*cot(c + d*x)**(5/2)), x)

________________________________________________________________________________________